Divergence in Cylindrical and Spherical Coordinate Systems

Consider now the divergence of vector fields when they are expressed in cylindrical or spherical coordinates:

Cylindrical

$$
\nabla \cdot \boldsymbol{A}(\overline{\mathrm{r}})=\frac{1}{\rho}\left[\frac{\partial\left(\rho \boldsymbol{A}_{\rho}(\overline{\mathrm{r}})\right)}{\partial \rho}\right]+\frac{1}{\rho} \frac{\partial \boldsymbol{A}_{\phi}(\overline{\mathrm{r}})}{\partial \phi}+\frac{\partial \boldsymbol{A}_{\boldsymbol{z}}(\overline{\mathrm{r}})}{\partial \boldsymbol{z}}
$$

Spherical

$$
\nabla \cdot \boldsymbol{A}(\bar{r})=\frac{1}{r^{2}}\left[\frac{\partial\left(r^{2} A_{r}(\bar{r})\right)}{\partial r}\right]+\frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta A_{\theta}(\bar{r})\right)}{\partial \theta}\right]+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}(\bar{r})}{\partial \phi}
$$

Note that, as with the gradient expression, the divergence expressions for cylindrical and spherical coordinate systems are more complex than those of Cartesian. Be careful when you use these expressions!

For example, consider the vector field:

$$
A(\bar{r})=\frac{\sin \theta}{r} \hat{a}_{r}
$$

Therefore, $A_{\rho}=0$ and $A_{\phi}=0$, leaving:

$$
\begin{aligned}
\nabla \cdot \mathbf{A}(\bar{r}) & =\frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\sin \theta}{r}\right)\right] \\
& =\frac{1}{r^{2}}\left[\frac{\partial(r \sin \theta)}{\partial r}\right] \\
& =\frac{1}{r^{2}}[\sin \theta]=\frac{\sin \theta}{r^{2}}
\end{aligned}
$$

